Как вычислить площадь прямоугольника

Прямоугольником называется геометрическая плоская фигура, у которой противоположные стороны расположены параллельно, а все углы равны 90 гр. Длиной прямоугольника называется величина большей стороны, а шириной – величина меньшей. Для того, чтобы вычислить площадь прямоугольника нужно знать некоторые его параметры – длину, ширину, диагональ, угол наклона диагонали к одной из сторон, поэтому расчет может производиться разными способами, в зависимости от того, какие величины нам известны.

 

Вычисление площади прямоугольника по линейным параметрам сторон

Если длину обозначить буквой «а», ширину «в», а площадь «S», то формула площади будет выглядеть следующим образом: S = a x b

Периметр прямоугольника, зная линейные величины, определяется следующим образом: P = 2(a + b)

Вычисление площади прямоугольника по длине диагонали и одной из сторон

Известно, что диагональ делит прямоугольник на два прямоугольных треугольника. Присваиваем диагонали индекс «с», а длину стороны «а», то нужно произвести следующие действия:

Длину неизвестной стороны находим по формуле Пифагора  b = V c2 – a2

Затем определяем площадь прямоугольника, как площадь треугольника, умноженное на два: Sтр = ½ (а х в), таким образом площадь прямоугольника равна S = 2 x Sтр = а х в.

Если известны длина одной стороны и периметр, то площадь прямоугольника вычисляется по формуле: — определяется длина второй стороны  b = (P – 2xa): 2 и тогда S = a x b

Если известны размер диагонали и угол между ней и стороной, обозначим его Ф, то площадь фигуры вычисляется с помощью тригонометрических функций:  Sтр = ½ х с2 х sinФ х cosФ, а общая площадь будет S = 2 x Sтр.

Самые интересные новости:

Оставить комментарий

css.php